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An analytical investigation is carried out to determine the conditions for in- 
stability in a viscous fluid contained between rotating coaxial cylinders of arbi- 
trary radius ratio. A solution method is outlined and then applied to cylinders 
having radius ratios ranging from 0-95 to 0.1. Consideration is given to both 
cases wherein the cylinders are rotating in the same direction and in opposite 
directions. Results are reported for the Taylor numbers and wave-numbers 
which mark the onset of instability. The present results are also employed to 
delineate the range of applicability of the closed-form instability predictions of 
Taylor and of Meksyn, which were derived for narrow-gap conditions. 

1. Introduction 
The stability of the flow contained between two rotating cylinders has been a 

subject of continuing interest for many years. The background of the problem 
and most of the major contributions are described in the monumental treatise 
on hydrodynamic stability of Chandrasekhar (1961). Consequently, the present 
discussion of the literature will be limited to those matters which bear directly on 
this investigation. 

Consideration is given to a viscous incompressible fluid contained between 
coaxial cylinders of radii R, and R,(R, > R,) which rotate with angular 
velocities Q, and Q2, respectively. There is no axial flow. It has been established 
that a flow pattern characterised by circular streamlines is stable against 
small disturbances when the inner cylinder is stationary, i.e. Q, = 0. However, 
when the inner cylinder is rotating? the aforementioned flow pattern may break 
down under the action of small disturbances. The specific conditions under 
which instability sets in have been explored within the framework of small- 
perturbation hydrodynamic stability theory. 

In formulating the stability problem, it has been common to consider the case 
in which the gap (R, -El) between the cylinders is small compared with the mean 
radius. Within this restriction and with the further assumption that the speeds 
Q, and Q, are of the same sign, Taylor (1923) derived a pair of closed-form expres- 
sions for predicting the onset of instability. The first of these is the more fre- 
quently quoted and pertains to the case where (R, - R,)/R, is fully negligible. 
The second applies ‘when (R2-R1)/R1 is small, but not neglected’. Later, 
in a series of papers which are summarized in his book, Meksyn (1961) attacked 
the problem by a mathematical method different from that of Taylor. By seeking 
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separate asymptotic solutions for the cases Q2/Q2, 2 0 and Q2/Q2, < 0, he was 
able to derive closed-form predictions for the instability condition. 

More recently, several aspects of the stability problem for the narrow gap 
have been reconsidered by Chandrasekhar (1961). Among these, an alternate 
derivation of Taylor's closed-form instability criterion was devised. Furthermore, 
a numerical computation involving a trial and error evaluation of a determinant 
was carried out, thereby providing information on instability both for Q2/Ql 2 0, 
and Q2,/Q1 < 0. In  addition to the foregoing, the problem has also been attacked 
by variational methods, e.g. Di Prima (1960). 

When the restriction to narrow gaps is lifted, the difficulties in solving the 
stability problem are compounded. This may well account, at  least in part, for 
the fact that the wide-gap case has heretofore received only restricted analytical 
consideration. Within the knowledge of the authors, the only pertinent investiga- 
tions presently available in the open literature are due to Chandrasekhar (1961), 
Chandrasekhar & Elbert (1962), Kirchgassner (1961)) and Witting (1958). 
The solutions due to Chandrasekhar involve the use of Bessel series and ulti- 
mately lead to the condition that an infinite-order determinant be zero. Kirch- 
gassner's solution method is based on the construction of an appropriate Green's 
function. The treatment of Witting makes use of an expansion in powers of 
6 = 1 - (Rl/R2),  wherein 5 is treated as a small parameter. The information 
relating to the onset of instability that has been provided by the aforementioned 
references is restricted to a relatively narrow range of the parameters. 

The present investigation is concerned with the case of the gap of arbitrary 
radius ratio, and a direct and relatively simple approachisdevisedfor determining 
the instability criteria. The method is utilized in computing the stability charac- 
teristics of rotating systems with radius ratios RJR, ranging from 0.95 to 0.1 
for both conditions where Q,/Ql 2 0 or QR,/Ql Q 0. The present results are also 
used in delineating the range of applicability of the aforementioned closed-form 
predictions of Taylor and Meksyn. 

2. The stability problem and its solution 
Analytical formulation. The formulation of the stability problem has been 

carried out by numerous investigators and is also reported in various reference 
books (e.g. Lin 1955). Consequently, there is no need to repeat the details here. 
In essence, one begins with the equations of motion and continuity in cylindrical 
co-ordinates ( r ,  8, z )  for unsteady, incompressible flow. The radial co-ordinate 
is measured from the axis of the coaxial cylinders, while z lies along the axis. The 
steady, axi-symmetric solution of these equations is known to be 

T$ = 0, V, = A r + B / r ,  ?; = 0 ,  (1) 

where 

and /& = Q2/Q,, 7 Ri/R2, ( 2 )  
the latter being the standard notations for the speed ratio and the radius ratio. 

For the stability problem, one postulates small perturbations vrr vo, and v, 
superposed on the main flow. Then the equations of motion are linearizecl by dis- 
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carding products and squares of vT, vg) and v,. It is further postulated that the 
perturbation quantities have the form 

where h is proportional to the wave-number of the disturbance in the z-direction 
and IT may be regarded as an amplification factor. The expressions in ( 1 )  and (3) 
are introduced into the linearized equations of motion and the continuity equa- 
tion. After some manipulation, the static pressure p and the amplitudes u(r) 
and w( r )  can be eliminated, leaving a single ordinary differential equation for 
the amplitude v(r )  of the tangential perturbation. To specialize this equation 
to the study of the onset of instability, one sets (T = 0 (the marginal stability 
state is stationary). The execution of the foregoing operations and the introduc- 
tion of dimensionless variables yields 

v, = u( r )  ert cos h z ,  Vg = v(r )  eUt cos h z ,  vs = w(r)  cut sin hz, (3 )  

wherein 

It is seen that equation (4) is a sixth-order, linear, homogeneous differential 
equation with variable coefficients. There are four parameters which appear in 
the equation: the speed ratio p, the radius ratio 7, the dimensionless wave- 
number A, and the grouping SZ:Rilv2. The latter will be designated here as a 
Taylor number and is denoted by T*. In  this connexion, it may be noted that 
there are several groupings in the literature which are referred to as the Taylor 
number and care must therefore be exercised in comparing results of different 
investigations. 

The boundary conditions for the stability problem require that the perturba- 
tion amplitudes u, v,  and u' be zero on the bounding surfaces r = R, and r = R,. 
By applying the equation of continuity and other relationships derivable from 
the equations of motion, it is possible to recast all of the foregoing into boundary 
conditions on v and its derivatives. Thus, at  p = 7, 

d2v l d v  v = 0, - +-- = 0, d3v- ($+A2) $ = 0, 
dP2 ,dP dP3 

dv 
(3+A2)- = 0. 

d2v dv d3v 

dp3- dP 
and, a t p  = 1, v = 0, --+- = 0, 

dP2 dP 
Inasmuch as the governing equation and the boundary conditions are homo- 

geneous, it  follows that equations (4) and (6) can be regarded as an eigenvalue 
problem from which the criteria for the onset of instability can be derived. In 
particular, if one fixes the speed ratio p and the radiusratio 7,  then, corresponding 
to a given A, one can determine the value of T* for which a solution to the eigen- 
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value problem exists. Further, by varying the assigned value of A, one can deter- 
mine a corresponding range of T* values for which the solution exists. Experience 
suggests that, among these admissible T* values, there is one which is lowest. 
In  other words, below this lowest T* value, a solution for the perturbation ampli- 
tude cannot be found. Thus, the minimum T* corresponds to the condition a t  
which instability sets in. It is evident that the critical T* may depend on the 
assigned values of the speed ratio p and the radius ratio 7. 

Whereas the foregoing discussion sets forth the connexion between the 
solution of equation (4) and the onset of instability, it  still remains to describe 
how solutions of equations (4) and (6) are to be obtained. The solution method 
will be discussed in the succeeding paragraphs. 

The solution method. The essential task is to find a value of T* which, for 
prescribed p, 7, and A, leads to a solution for v that satisfies the differential equa- 
tion (4) and the boundary conditions (6).  The first step in the solution method is 
to select a trial value of T*. Then, corresponding to this T*, one constructs by 
numerical means t h e e  solutions vI, vII, vIII of equation (4) which satisfy the 
following initial conditions: 
(a) vI satisfies equation (6  a), and in addition 

dv,/dp = 1, d4v,/dp4 = d5vI/dp5 = 0 a t  p = 7. 

(6) vII satisfies equation ( 6 a ) ,  and in addition dvI,/dp = 0, d4vII/dp4 = 1, 
d5vII/dp5 = 0 at p = 7. 

( c )  vIII satisfies equation (Sa.)  and in addition dvII,/dp = 0, d4vII,/dp4 = 0, 
d5vI,,/dp5 = 1 a t  p = 7. 

It is easily seen that there are six initial conditions a t  p = 7 for each of the 
functions vI, vII, and vIII. Consequently, with p = 7 as a starting point, any one 
of several numerical forward-integration schemes can be employed to compute 
these functions. The Runge-Kutta method was used in this investigation inas- 
much as it is a part of the program library of the Control Data 1604 computer. 

In  general, none of the functions vI, vII, and vIII will satisfy the boundary 
conditions ( 6  b )  which apply at p = 1. In  recognition of this, one defines 

so that a solution is achieved when f = g = h = 0. Although the f, g, and h for 
the trial solutions vI, vII, and vIII are not necessarily zero, one may seek linear 
combinations of these which do sum to zero. Thus, 

‘lfI + ‘ZfII + ‘3fIII = 

‘191 + ‘2911 + ‘39111 = 

‘1 hI + c2 + c3 h I I I  = O ,  

and, in order that these linear algebraic equations be solvable non-trivially, it  is 
necessary that the determinant of the coefficients be zero. Correspondingly, 

(9) 

one defines fI f11 fIII 
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Thus, if A = 0,  one can solve equations (8) and satisfy the boundary conditions 
a t  p = 1. It can be proved rigorously that the foregoing method provides a 
valid solution of the problem defined by equations (4) and (6); the authors will 
be pleased to supply such a proof upon request. 

However, for prescribed values ofp,  7, and A, it  is not to be expected that 
any arbitrary trial value of T* will yield A = 0. Rather, one repeats the fore- 
going operations for a range of trial values of T*, and in this way there is generated 
a function A = A(T*) corresponding to the fixed values of p, 7, and A. The value 
of T* at which a curve of A vs T* crosses the A = 0 axis is the Taylor number 
marking the onset of instability for the given ,it,, 7, and A. 

Next, one repeats the foregoing operations for another value of A, holding the 
,u and 7 fixed. This results in another value of T* which satisfies the differential 
equation (4) and boundary conditions (6). Further, one may assign a succession 
of A values and find the corresponding T* values. As expected, for a given ,LL 

and 7, there exists a A at which the T* is a minimum. This is taken to be the 
critical Taylor number for the given ,u and 7. 

The decisions involved in the foregoing solution method (e.g. whether A > 0 
or A < 0 )  lend themselves readily to computer logic. Consequently, the deter- 
mination of the critical Taylor number can be carried out almost completely 
within the computer. 

Critical Taylor numbers have been thus determined for radius ratios 7 = R,/R, 
of 0.95, 0.75, 0-5, 0.35, 0.35, 0.15, and 0.10 over a wide range of speed ratios 
,u = Q2/Ql. For ,u 2 0 (cylinders rotating in the same direction), computations 
were carried out without difficulty over the entire range from p = 0 to 
,u = (R1/R2),, the latter value being the limit beyond which the flow is stable. 
For p < 0 (cylinders rotating in opposite directions), the computations were 
extended to speed ratios whose absolute magnitudes were substantially larger 
than those for p > 0. The largest negative value of p for which computations 
were carried out for each radius ratio was limited by numerical difficulties 
whichcould bedetectedwhen thecurveof A us T* wasnotsmooth. Thesenumerical 
difficulties are believed to be attributable to loss of significant figures. This con- 
dition could be remedied by the use of multiple-precision arithmetic if one 
wished to consider larger negative speed ratios. 

The results of the analysis and their relationship to prior work will be de- 
scribed in the next section. 

3. Instability criteria and related results 
The results which have been derived by the application of the foregoing solu- 

tion method are listed in tables 1 and 2, respectively for the cases Q2/Q1 2 0 and 
Q2/Ql < 0. In  addition, a graphical representation of the instability criteria 
is presented in figures 1, 2, and 3. 

Attention may first be given to the general structure of the tables. In each 
table, the listing is arranged so that information pertaining to a given radius 
ratio R,/R, is grouped together. In  addition to the Qz/Ql value which character- 
izes each case, there is also listed the quotient pjq2 = (Q,/Q,) (R,/R,),. The 
latter has particular relevance inasmuch as the flow is known to be stable when 
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(Q,/Q,)(B,/R1)2 > 1 (Rayleigh 1920). The predicted onset of instability a t  a 
given radius ratio and speed ratio occurs a t  the corresponding T* value given in 
the tables. 

RIIRZ 
0.95 

0.75 

0.50 

0.35 

0.25 

0.15 

0.10 

Q Z / G  

0~0000 
0-2256 
0-4500 
0-6769 
0.8500 
0~0000 
0.1406 
0.2800 
0.4219 
0.5300 
0~0000 
0-0600 
0.1250 
0.1800 
0.2350 
0~0000 
0.0306 
0.0612 
0.0918 
0.1160 
0~0000 
0.0156 
0.0310 
0.0469 
0.0600 
0~0000 
0.0056 
0.0113 
0.0169 
0-02 11 
0~0000 
0.0025 
0.0050 
0.0075 
0-0095 

P/T2 
0.000 
0.250 
0.499 
0.750 
0.942 
0.000 
0.250 
0.498 
0.750 
0.942 
0.000 
0.240 
0.500 
0.720 
0-940 
0.000 
0.250 
0.500 
0.750 
0.947 
0.000 
0.250 
0.496 
0.750 
0.960 
0.000 
0.250 
0.500 
0.7 50 
0.940 
0.000 
0-250 
0.500 
0.750 
0.950 

N1-3) 
- 7 7  

J. 
- 7 7  

j. 
3.163 
3-150 
3.150 
3.145 
3-145 
3.205 
3-192 
3.185 
3.179 
3.172 
3.240 
3.225 
3.225 
3-225 
3.210 
3-310 
3.300 
3.280 
3.270 
3.260 
3.360 
3.350 
3-340 
3.330 
3.310 

T*t 
1.517 (7) 
1.637 (7) 
2.055 (7) 
3.545 (7) 
1.376 (8) 
2.093 (5) 
2.324 ( 5 )  
2.974 (5) 
5-213 (5) 
2.055 (6) 
7.439 (4) 
8.531 (4) 
1.137 (5) 
1.839 (5) 
7.838 (5) 
9.464 (4) 
1.123 ( 5 )  
1.518 (5) 
2.754 (5) 
1.213 (6) 
1.764 (5) 
2.134 (5) 
2,911 (5) 
5.407 (5) 
3-164 (6) 
6.790 (5) 
8.385 (5) 
1.171 (6) 
2.189 (6) 
8.628 (6) 
2.460 (6) 
3.070 (6) 
4.326 (6) 
8.155 (6) 
3-898 (7) 

T T  
1.0003 
0.9988 
0.9982 
0.9979 
0.9978 
0.9764 
0.9832 
0.9886 
0.9929 
0.9957 
0.6811 
0.7361 
0.7862 
0.8216 
0.8516 

- 0.7091 
- 0.5093 
- 0.4198 
- 2.073 

0.4005 
- 4.200 
- 3.632 
- 3.164 
- 2.755 
- 2.463 
- 25.72 
- 23.59 
- 21.74 
- 20.12 
- 19.03 
- 92.75 
- 86.51 
- 80.99 
- 76.06 
- 72.54 

T,, 
0.9856 
0.9921 
0.9952 
0.9967 
0.9974 
0-9648 
0.9781 
0.9865 
0.9924 
0.9956 
0.9052 
0.9310 
0.9516 
0.9649 
0.9758 
0.7653 
0.8108 
0.8468 
0.8759 
0.8952 
0.4347 
0.5116 
0.5745 
0.6289 
0.6675 

- 1.036 
- 0.8548 
- 0.6982 
-0.5617 
- 0.4694 
- 4.329 
- 3.953 
- 3.620 
- 3.324 
-3.112 

f All T* values are multiplied by lon, where rz is the number in parentheses. 

TABLE 1. Stability criteria for !&/a, 2 0. 

In  addition to T*,  numerical values of  two other Taylor numbers are included 
in the tables. That one which is denoted by TT is defined as 

where l+p 0.652(1-7) x=------ 
1-P  7 
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RlIR, 
0.95 

0.75 

0.50 

0.35 

0.25 

0-15 

0.10 

- Q2lQ 

0.1 
0.2 
0.5 
0.6 
1.0 
1.5 
2.0 
3.0 
0.1 
0.2 
0.4 
0.5 
1.0 
1.5 
2.0 
0.1 
0.2 
0.3 
0-35 
0.5 
1.0 
1.2 
1.5 
0.05 
0.10 
0.17 
0-20 
0.35 
0.50 
0.75 
0.85 
0.05 
0.075 
0.10 
0.15 
0-20 
0.35 
0.50 
0.025 
0.040 
0.050 
0.100 
0.150 
0.200 
0.250 
0.300 
0.010 
0.016 
0.025 
0.050 
0.075 
0.090 
0.120 
0.150 

- PIT2 
0.1108 
0.2216 
0.5540 
0.6648 
1.108 
1.662 
2.2 16 
3.324 
0.1778 
0.3556 
0.7111 
0.8889 
1.778 
2.687 
3.556 
0.400 
0*800 
1.200 
1-400 
2.000 
4.000 
4.800 
6.000 
0.408 
0.816 
1.388 
1.633 
2.857 
4.082 
6.122 
6.939 
0.800 
1.200 
1.600 
2-400 
3.200 
5.600 
8.000 
1.111 
1.778 
2.222 
4.444 
6.666 
8.888 

11.11 
13.33 

1.000 
1-600 
2.500 
5.000 
7.500 
9.000 

12.000 
15.000 

1.546 x 
( T o - ) l )  A 

4.38 
4.01 
3.41 
3.29 
-7r 

I 
4 

4.23 
3.81 
3-27 
2.99 
3.06 
3.08 
3.14 
3.82 
3.20 
3.08 
2.98 
3.06 
3.07 
3.08 
3.09 
3.95 
3.34 
3.09 
2.95 
3.03 
3.04 
3.04 
3.04 
3.51 
3.08 
2.95 
2.96 
2.96 
2.97 
2.98 
3.39 
3.18 
3.04 
3.03 
3.02 
2-99 
2.99 
2.98 
3-61 
3.1 1 
2.98 
3.05 
3.02 
3.01 
2.99 
2.98 

T* t 
1.508 (7) 
1.564 (7) 
1.963 (7) 
2.257 (7) 
4.588 (7) 
9.122 (7) 
1.594 (8) 
3.834 (8) 
2.069 (5) 
2.143 (5) 
2.701 (5) 
3.290 (5) 
9-500 (5) 
2.020 (6) 
3.697 (6) 
7.007 (4) 
7.846 (4) 
1-048 (5) 
1.262 (5) 
2.088 ( 5 )  
6.772 (5) 
9.761 (5) 
1.55 (6) 
8.381 (4) 
8.536 (4) 
1.077 (5) 
1.253 (5) 
2.491 (5) 
4.220 (5) 
8.552 (5) 
1.082 (6) 
1.435 (5) 
1.503 (5) 
1.898 (5) 
2.417 (5) 
3.268 (5) 
6-670 (5) 
1.168 (6) 
4.884 (5) 
5.151 (5) 
5.666 (5) 

1.364 (6) 
1.883 (6) 
2-497 (6) 
3.264 (6) 
1.673 (6) 
1.613 (6) 
1.759 (6) 
2.520 (6) 
3.310 (6) 
3.827 (6) 
4.963 (6) 
6.206 (6) 

.9.334 (5) 

T ,  
1.002 
1.004 
1.026 
1.081 

- 4.14 
- 11.3 
- 41.0 
- 248 

0.971 
0.964 
0.978 
1.097 

- 8.13 
- 47.9 
- 170 

0.591 
2.82 

- 1.46 
- 2.27 
- 7.99 

- 109.9 
- 229.2 
- 570 
- 1.22 
- 2.07 
- 4.56 
- 6.48 
- 28.0 
- 83.2 
- 334 
- 527 
- 7.09 
- 9.67 
- 13.7 
- 28.5 
- 52.6 
- 217 
- 633 
- 40.7 
- 58.0 
- 75.2 
- 226 
- 500 
- 951 
- 1644 
- 2697 
- 128 
- 182 
- 240 
- 610 
- 1173 
- 1626 
- 2844 
- 4536 

T M -  

2.140 
1.675 
1.054 
0,993 
1.017 
1.023 
1.026 
1.030 
1.647 
1.239 
0.900 
0.862 
0.937 
0.957 
0.972 
1.048 
0.776 
0.726 
0.743 
0.795 
0.857 
0.875 
0.885 
0.946 
0-718 
0.634 
0.644 
0.710 
0.746 
0.791 
0.802 
0.685 
0.597 
0.571 
0.605 
0.632 
0.683 
0.722 
0.572 
0.511 
0.509 
0.555 
0.583 
0.608 
0.629 
0.658 
0.577 
0.502 
0-480 
0.511 
0.530 
0.540 
0-559 
0.574 

t All T* values are multiplied by lon, where n is the number in parentheses. 

TABLE 2. Stability criteria for Q,/!2, < 0. 
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The reason for considering TT is the fact that Taylor predicted the instability 
criterion TT = 1 on the basis of his analpis for the case 'when (R2-  R,)/R, is 
small, but not neglected'. The Taylor number denoted by TAI+ in table 1 is given 

The analysis of Meksyn for the case of p 2 0 leads to the criterion TJl+ = 1. 

- 15 - 10 - 5  0 0.2 0.4 0.6 0.8 1.0 

FIGURE 1. Conditions for instability of the flow between two rotating cylinders. 

Finally, the definition of the Tnl- of table 2 is 

wherein yo represents the radial position at which the main-flow velocity V, 
(equation (1) )  vanishes when ,u < 0, i.e. 

Meksyn's analysis for p < 0 predicts the criterion Tnr- = 1. 
In  addition to providing a convenient comparison with the predictions of 

Taylor and Meksyn, the listing of the TT and Taf values facilitates interpolation 
of the results for cases other than those tabulated. In  particular, it  is readily 
seen that the T,,, is a slowly and smoothly varying function of 0,/Q2, at a given 
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radius ratio. A similar statement applies to T,- for Cl,/Cl, values that are not 
too close to zero. 

The values of the dimensionless wave-numbers A corresponding to the onset 
of instability are also presented in tables 1 and 2. For the case of ,u > 0 (table 1)  
the grouping A( 1 - 7) is listed in recognition of the fact that A( 1 - 9 )  = 7~ on the 

1.4 

1.2 

, 1.0 

3 

0.8 

0.6 

0.4 

FIGURE 2.  Instability results in terms of Meksyn’s grouping T,. 

basis of the narrow-gap analysis. On the other hand, for p < 0 (table 2), there is 
listed the grouping 1-546 (qo - 7) A whose value is predicted to be 7~ by Meksyn’s 
asymptotic analysis. 

The T* results may be discussed with the aid of figure 1. The ordinate of the 
figure is the ratio of the T* which denotes instability a t  a given ,u and 11 to the 
T* which denotes instability when ,u = 0 a t  the same 7. This information is 
plotted against ( Q,/Q,) (R,/R,)2,  and the curves are parameterized by R,/R,. 
There is L change in the abscissa scale at ,u = 0. The T* values corresponding to 
,u = 0 are denoted as Tg and are tabulated in the figure. 

With certain exceptions to be noted below, the curves are seen to rise mono- 
tonically with increasing values of I sZ,/sZ,l, thereby indicating that larger values 
of Ql are required to bring about instability. For sZ,/sZ, 2 0, the curves for the 
various radius ratios are contained in a tight bundle and approach infinity 
asymptotically as (Q,/Cl,) (B2/R1)2 approaches unity. On the other hand, for 
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Q,/sZ, < 0, there is a marked spreading of the curves as a function of radius 
ratio. 

Further inspection of the figure reveals that the minima in the stability curves 
do not lie precisely a t  Q2/Ql = 0; rather, the minima are achieved at  small 
negative values of Q2/Ql. The departure of the minimum T* from Tg is accentu- 
ated as RJR, decreases. The existence of such off-axis minima has been previously 

I 

1.0 - ' 

FIGURE 3. Instability results in terms of Taylor's grouping Tp. 

noted by Donnelly & Fultz (1960), both in connexion with stability diagrams 
based on their own experimental data and on the calculations of Chandrasekhar. 

The discussion of results for the Taylor numbers T,, and T, is facilitated by 
reference to figures 2 and 3, respectively. Consideration will first be given to  
TAI, the definition of which is stated for the cases p 2 0 andp < 0 in equations (1 1) 
and ( la ) ,  respectively. Inspection of the plotted results for T,,, indicates that 
Meksyn's prediction of Tnli. = 1 for the onset 'of instability is reasonably accurate 
for moderately small radius ratios. Furthermore, the Meksyn prediction takes on 
an even more favourable appearance when it is realized that the instability 
value of Q, is computed from T&+. Indeed, it would appear that the relationship 
TJf+ = 1 could be employed with confidence for R,/R, 2 0.6 and could serve as a 
good first approximation for computing L2, for RJR, as low as 0.35. As RJR, 
decreases, T,, departs more and more from unity and finally goes negative. 
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However, as is evident from figure 2, !&+ is a smooth function of Q2/Ql for 
any given radius ratio, and this facilitates accurate interpolation to find results 
a t  values of Q2/fi l  other than those tabulated here. 

Turning next to the qTf- results of figure 2, it  is seen that the relationship 
T$f- = 1 is strongly violated for values of Q,/Q, near zero. This state of affairs 
was foreseen by Meksyn. For the larger radius ratios, the Meksyn prediction 
(qtf- = 1) is closely approached at  larger negative values of Q2/Ql. However, 
for the smaller radius ratios, T&f- falls well below unity even at the larger I fi2/Ql 1. 
It may be noted from the figure that, for Q2/Q1 values which lie to the left of their 
respective minima, the curves are smooth and slowly varying. Consequently, 
in this range, they provide an accurate means of interpolation to find results for 
cases other than those listed in table 2. 

Attention may now be given to the graphical presentation for the Taylor 
number TT, figure 3.  Inspection of this figure reveals that Taylor's prediction 
(TT = 1) holds only for radius ratios near unity, and then only for values of 
Q2/Q1 which are positive or perhaps slightly negative. At smaller radius ratios, 
TT takes on negative values which can be quite large. A similar statement applies 
at larger negative values of Q,/Q, even when RJR, is near unity. The decisive 
term in establishing the sign of T'' is the x factor in equation (lob). It is clear 
from Taylor's presentation that he was aware of the limitations of the prediction 
TT = 1. The information given in tables 1 and 2 and in figure 3 is useful in setting 
quantitative limits for the conditions under which this prediction can be applied. 

Another quantity of interest is the wave-number A = AR, at which the onset 
of instability occurs. For the case ,u 2 0, it is seen from table 1 that the relation- 
ship A( 1 - 7) = n- provides a very good correlation of the results for the entire 
range of radius ratios studied here. For RJR, 2 0.35, this relationship holds to 
within 2 % or better. The greatest deviation is about 6.6 % and this occurs for 
R1/R2 = 0.1. 

For the case ,u < 0,  the wave-number results listed in table 2 may be compared 
with the Meksyn prediction 1.546 ( ~ ~ - 7 )  = n-. It is seen that this relationship 
is quite successful in correlating A values for the larger negative values of Q,/Q,. 
For the range of negative Q2/Ql in which the foregoing correlation is inapplicable 
(i.e. for Q2/Q2, near zero), one may use the relationship A( 1 - 7) = n-. It may be 
noted, however, that the latter leads to erroneous values of A at large negative 

It is also of interest to compare the present instability results for the wide-gap 
case with those of other investigators. Chandrasekhar & Elbert (1962) provide 
tabular results for RJR, = 0.5 in the range - 0.5 < ,u < (RJR,),. Upon expres- 
sing their instability results in terms of the T" parameter and comparing with 
tables 1 and 2, one finds excellent agreement. Results for R,/R, = 0.5 are pre- 
sented graphically by Kirchgassner (1961) for - 0.4 < p < (R1/R2),. These are 
also in satisfactory agreement with those of this investigation. 

Finally, it  is appropriate to compare the present instability predictions with 
those of experiment. Recently, Donnelly & Fultz (1960) have reported an 
extensive investigation of the case R,/R, = 0.5. These authors have compared 
their data with the predictions of Chandrasekhar in the range - 0.5 < ,u < 0.186 

Q2/Ql*  
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and found very good agreement. It is only necessary, therefore, to give further 
consideration to the range of larger negative a,/Q,. For - 1-13 < p < - 0.5, 
the agreement between analysis and experiment continues to be very good. 
However, for p < - 1.13, the data appear to be somewhat scattered. For 
instance, for the successive values of -,u = 1.164, 1.178, 1.283, 1.291, 1.327, 
and 1-339, the corresponding values of T* x 10-6 computed from the data are 
1.21, 1-03, 1.04, 1.52, 1.24, 1.08. The presence of such scatter in the data dis- 
courages comparison of analysis and experiment in this range. 
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